charakteristisches Polynom
- charakteristisches Polynom
charakterịstisches Polynom
[k-], einer
n -reihigen quadratischen
Matrix A zugehöriges, durch die
Determinante det(
A —
λE) gegebenes
Polynom n -ten Grades in
λ (
E die
Einheitsmatrix). Die Nullstellen des charakteristischen Polynoms, die
Lösungen der
charakteristischen Gleichung oder
Säkulargleichung det(
A —
λE) = 0, sind die Eigenwerte der Matrix
A (
Eigenwertproblem).
Universal-Lexikon.
2012.
Schlagen Sie auch in anderen Wörterbüchern nach:
Charakteristisches Polynom — Das charakteristische Polynom (Abk.: CP) ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Dieses Polynom, das für quadratische Matrizen und Endomorphismen von endlichdimensionalen Vektorräumen definiert ist, gibt Auskunft… … Deutsch Wikipedia
charakteristisches Polynom — būdingasis daugianaris statusas T sritis fizika atitikmenys: angl. characteristic polynomial vok. charakteristisches Polynom, n rus. характеристический многочлен, m; характеристический полином, m pranc. polynôme caractéristique, m … Fizikos terminų žodynas
Normiertes Polynom — In der Mathematik ist ein Polynom (von griech. πολύ / polý und lat. nomen = „mehrnamig“) eine Summe von Vielfachen von Potenzen mit natürlichzahligen Exponenten einer Variablen, die in den meisten Fällen mit x bezeichnet wird. In der elementaren… … Deutsch Wikipedia
Jordan'sche Normalform — Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Sie ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix (trigonalisierbaren linearen Abbildung) ähnlichen… … Deutsch Wikipedia
Jordan-Normalform — Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Sie ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix (trigonalisierbaren linearen Abbildung) ähnlichen… … Deutsch Wikipedia
Jordan Normalform — Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Sie ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix (trigonalisierbaren linearen Abbildung) ähnlichen… … Deutsch Wikipedia
Jordanform — Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Sie ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix (trigonalisierbaren linearen Abbildung) ähnlichen… … Deutsch Wikipedia
Jordannormalform — Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Sie ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix (trigonalisierbaren linearen Abbildung) ähnlichen… … Deutsch Wikipedia
Jordan’sche Normalform — Die jordansche Normalform ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Sie ist ein einfacher Vertreter der Äquivalenzklasse der zu einer trigonalisierbaren Matrix (trigonalisierbaren linearen Abbildung) ähnlichen… … Deutsch Wikipedia
Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia